Layer Lengths, Torsion Theories and the Finitistic Dimension
نویسندگان
چکیده
Let Λ be a left-artinian ring. Generalizing the Loewy length, we propose the layer length associated with a torsion theory, which is a new measure for finitely generated Λ-modules. As an application, we obtain a theorem having as corollaries the main results of [3] and [7].
منابع مشابه
Finitistic Dimension through Infinite Projective Dimension
We show that an artin algebra Λ having at most three radical layers of infinite projective dimension has finite finitistic dimension, generalizing the known result for algebras with vanishing radical cube. We also give an equivalence between the finiteness of fin.dim.Λ and the finiteness of a given class of Λ-modules of infinite projective dimension.
متن کاملFrom torsion theories to closure operators and factorization systems
Torsion theories are here extended to categories equipped with an ideal of 'null morphisms', or equivalently a full subcategory of 'null objects'. Instances of this extension include closure operators viewed as generalised torsion theories in a 'category of pairs', and factorization systems viewed as torsion theories in a category of morphisms. The first point has essentially been treated in [15].
متن کاملA Quillen Model Structure Approach to the Finitistic Dimension Conjectures
We explore the interlacing between model category structures attained to classes of modules of finite X -dimension, for certain classes of modules X . As an application we give a model structure approach to the Finitistic Dimension Conjectures and present a new conceptual framework in which these conjectures can be studied. Let Λ be a finite dimensional algebra over a field k (or more generally...
متن کاملOn finitistic dimension of stratified algebras
In this survey we discuss the results on the finitistic dimension of various stratified algebras. We describe what is already known, present some recent estimates, and list some open problems.
متن کاملAn Upper Bound for the Finitistic Dimension of an Ei Category Algebra
EI categories can be thought of as amalgams of finite posets and finite groups and therefore the associated algebras are built up from incidence algebras and group algebras of finite groups. For this particular class of algebras we construct an upper bound for the finitistic dimension.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 21 شماره
صفحات -
تاریخ انتشار 2013